Extended Cesaro Operator from to Bloch Space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Composition Operator from Bers-Type Space to Bloch-Type Space on the Unit Ball

In this paper, we characterize the boundedness and compactness of weighted composition operator from Bers-type space to Bloch-type space on the unit ball of Cn. 2010 Mathematics Subject Classification: Primary: 47B38; Secondary: 32A37, 32A38, 32H02, 47B33

متن کامل

Weighted Composition Operator from Bloch–type Space to H∞ Space on the Unit Ball

In this paper, we characterize those holomorphic symbols u on the unit ball B and holomorphic self-mappings φ of B for which the weighted composition operator uCφ is bounded or compact from Bloch-type space to H∞ space. Mathematics subject classification (2010): Primary 47B33; Secondary 47B38.

متن کامل

Essential norm of weighted composition operator between α-Bloch space and β-Bloch space in polydiscs

Let ϕ(z) = (ϕ 1 (z),...,ϕ n (z)) be a holomorphic self-map of D n and ψ(z) a holomorphic function on D n , where D n is the unit polydiscs of C n. Let 0 < α, β < 1, we compute the essential norm of a weighted composition operator ψC ϕ between α-Bloch space Ꮾ α (D n) and β-Bloch space Ꮾ β (D n).

متن کامل

A Lower Bound on the Cesaro Operator

If the sequence a = (a„>^ E /2, i.e., ||a||2 = 2~=0 | a„ |2 < oo, define Sa as the sequence of averages 1 " 2 ak n + 1 , It follows easily from the Marcinkiewicz Interpolation Theorem that S is a bounded operator from I2 to I2; this can also be proved directly using the Cauchy-Buniakowski-Schwarz inequality [1]. S is known as the Cesàro operator. S is, of course, not bounded below, but the foll...

متن کامل

Generalized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball

Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modern Applied Science

سال: 2009

ISSN: 1913-1852,1913-1844

DOI: 10.5539/mas.v3n4p142